Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime-Switching Space-Time (RST) Method

نویسندگان

  • Tilmann Gneiting
  • Kristin Larson
  • Kenneth Westrick
  • Marc G. Genton
  • Eric Aldrich
چکیده

With the global proliferation of wind power, accurate short-term forecasts of wind resources at wind energy sites are becoming paramount. Regime-switching space-time (RST) models merge meteorological and statistical expertise to obtain accurate and calibrated, fully probabilistic forecasts of wind speed and wind power. The model formulation is parsimonious, yet takes account of all the salient features of wind speed: alternating atmospheric regimes, temporal and spatial correlation, diurnal and seasonal non-stationarity, conditional heteroscedasticity, and non-Gaussianity. The RST method identifies forecast regimes at the wind energy site and fits a conditional predictive model for each regime. Geographically dispersed meteorological observations in the vicinity of the wind farm are used as off-site predictors. The RST technique was applied to 2-hour ahead forecasts of hourly average wind speed at the Stateline wind farm in the US Pacific Northwest. In July 2003, for instance, the RST forecasts had root-mean-square error (RMSE) 28.6% less than the persistence forecasts. For each month in the test period, the RST forecasts had lower RMSE than forecasts using state-of-the-art vector time series techniques. The RST method provides probabilistic forecasts in the form of predictive cumulative distribution functions, and those were well calibrated and sharp. The RST prediction intervals were substantially shorter on average than prediction intervals derived from univariate time series techniques. These results suggest that quality meteorological data from sites upwind of wind farms can be efficiently used to improve short-term forecasts of wind resources. It is anticipated that the RST technique can be successfully applied at wind energy sites all over the world.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting Crude Oil prices Volatility and Value at Risk: Single and Switching Regime GARCH Models

Forecasting crude oil price volatility is an important issues in risk management. The historical course of oil price volatility indicates the existence of a cluster pattern. Therefore, GARCH models are used to model and more accurately predict oil price fluctuations. The purpose of this study is to identify the best GARCH model with the best performance in different time horizons. To achieve th...

متن کامل

A General Probabilistic Forecasting Framework for Offshore Wind Power Fluctuations

Accurate wind power forecasts highly contribute to the integration of wind power into power systems. The focus of the present study is on large-scale offshore wind farms and the complexity of generating accurate probabilistic forecasts of wind power fluctuations at time-scales of a few minutes. Such complexity is addressed from three perspectives: (i) the modeling of a nonlinear and non-station...

متن کامل

Optimization of surface mounted axial flux switching generator with response surface method

In this paper, a novel structure of a axial flux switching machines for use in wind speed turbines at low speeds has been proposed, which in addition to the previous advantages, has a simple and economical design for the production of this type of machines. In this proposed machine, the magnets are placed on the surface of stator, and the three-phase winding is located in the space between the ...

متن کامل

Estimating Stock Price in Energy Market Including Oil, Gas, and Coal: The Comparison of Linear and Non-Linear Two-State Markov Regime Switching Models

A common method to study the dynamic behavior of macroeconomic variables is using linear time series models; however, they are unable to explain nonlinear behavior of the series. Given the dependency between stock market and derivatives, the behavior of the underlying asset price can be modeled using Markov switching process properties and the economic regime significance. In this paper, a two-...

متن کامل

Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging

Probabilistic forecasts of wind speed are becoming critical as interest grows in wind as a clean and renewable source of energy, in addition to a wide range of other uses, from aviation to recreational boating. Statistical approaches to wind forecasting offer two particular challenges: the distribution of wind speeds is highly skewed, and wind observations are reported to the nearest whole knot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004